

	: 1	
Para n	Info	nce for ¿ Zero-Inf ated Po
	istri	tion and Its Variants
San in	rabo	, Sujay Da ₁ a ^{2*} and Bas iirul A. Po
		August 10 2009
. 1 - [[]		
Universit sales of	as Pan	nerican, Edir ourg, ² Fred H tchinson Ca
search fer in 110	ttle, 3 '	nerican, Edir surg, ² Fred H tchinson Caj theon Netwo _i k Centric Sys m, * Corres

Ibatiu Cha tiorrt

Count at listriby jo a datas than accommuld watt ntrodu \bigcirc d $\bigvee_{i \in \mathcal{I}} g_i$ $(1965), \mid \exists c \mid$ ıpplica ər can & (1992), հա and GlUsl (UU) listribu 🐠 oast, £ $\min \mathbf{ha}^{\oplus} \mathbf{b} \mathbf{1}^{\oplus}$ Bayes m 120 or mar c th the intight 16 Scollnik 1 1 3 3 used for m distribution in all Deen in Book in plut for dischet for the of a CM o Fu b extende t # 15

Here w 5 variants in 1995 le ling

b dla

d ne

n ø le : e

i hinon ar Mond

in real life a d are often n delled by a ver, it und sometin's that the nur ber of zeroes is allowed la a Poisson madel. So, in xcess $_{11}$ λ_{1} roes, a zero-ir lated Poisson $_{11}$ stribution (r_{1,1,2,2} R_{12} eratu T Ayee, for examilie, Cohen (1966), Singh (1966), Singh (1966) p (1986) and Heilborn (1981). Some int \rightarrow be found in Feilborn and Gi son (1990), al. (1 + 1), Saei and NorGilchrist (19 + 7), Li et al. ere have been attempts to a meralize the as the one in Consul and Jai (1973), and eraliz in arsions of ZIP (Angers and Bi was (2003) poor of sum of generalized if IP model. The Poisson distinction ne equilibries of its mean and variance—a feature not (1 21) in asets of the variances of ceed their means. This need F an over spersed Poiss n (OP) model See Cox (191) ong o half. Overdisper ed Poisson models have been liseas a and one cal show that a 2 P model is mueli 1 1. (2005) reved another vyriant of the the C hy-Maxwell-Hoisson (CMP) distribution, for the hors and derionstrated its distributions as Later ed Mane et al. 12006) provided a Bayesian sing collecting gate priors. The CMP distribution can highlift inflate in rsion.

para ic inference i sults for a ZII distribution above the discuss point estimation, his pothesis test

velopments: id are some hat scatt ere is no such unified presentation iaf tributions. However, this is not m ults presente i here are ne / (except orne erences citec). Detailed proofs and We believ this article vill serve dapplied research on this interesting per is as follows. In section 2, we pr $^{\mathrm{ride}}$ distributions In section 3 we derive ihe (tions of sum of ZII² varia des. Sect ting for ZIP data. Section 5 provided son nway-Maxw Il-Poisson (C'MP) dist a puti the zero-ini ated version of CMP. eactid reralized Poi son distribut on and vit cor yesian inference for the Z'P model, Bcm. pendix 1, w ile Appendix 2 describ is so thodology of thined in section 4.

Prelin¹ inaries

e basic idea ehind a ZIP listributi_pa wi her probability to zero and lower property and lower property as a compared to corresponding Poisson distribution with processing a ZIP distribution h two parameters is formally define by

$$P(X = 0) = \phi \cdot (1 - 1)$$

$$P(X = | :) = (1 - | :) = [$$

ere ϕ is a \mathbf{m}^{\oplus} nber betweer 0 and 1

$$P(X = x_1) = \phi I(x^{-0}, 0)$$

any non-negative integer $\stackrel{(i)}{\sim}$, where $\stackrel{(i)}{\sim}A)$ i

The above definition is the most of and a n. However, there are sev ral other rays 30 g ameters and are based on simple-n licec in a them Here.

The first alternative definition is:

$$P(X=x) = \left(1 - \frac{1}{1 - \frac{1}{2}} - \frac{1}{\lambda}\right) \left(1 - \frac{1}{1 - \frac{1}{2}}\right)$$

To our knowledge, gy for this class of ticle. Most of the e quoted from the ed wherever possifuture theoretical ... The layout of the on the ZIP family conditional distrion and hypothesis derivations for the ch, section 6 takes the zero-inflated ion (section 8) on ils are provided in dies related to the

j.: (Ĉ[)

af ⊭ leif

35.78

 λ ,nd λ is to assign a

so write this as:

iction of the event

ig a ZIP distribuof them use two . We shall discuss A second way of defining the ZIP ϵ^{+-}

ame as two n is . abil ty 0 b

s γ and λ and it is ded by the following constant number γ .

$$P(X = 0) = \begin{pmatrix} \delta \end{pmatrix} e^{\begin{vmatrix} \lambda \\ \lambda \end{vmatrix}} d$$

$$P(X = x) = \begin{pmatrix} 1 + \delta - \frac{1}{1} & -\lambda \\ \frac{\lambda^{x}}{1} & x > 0 \end{pmatrix}$$

This time, the two parameters are δ and ϵ and ϵ can but $\frac{\phi(1-e^{-\lambda})}{e^{-\lambda}}$. This definition is guilt he by the bllow tl e probability at 0 by multiplying the higina Γ than 1. Of course, one has to keep in poll that

A third alternative definition of the pene cist

by that δ is nothing g intuition: increase by a number bigger noule e less than $e^{\lambda} - 1$.

$$(X=0) = 1 - \frac{1}{1 + \mu \rho} \stackrel{1}{\downarrow}_{0}$$
 and

$$P(X=x)=e^{-\mu}rac{(f^{-\kappa})}{\delta} ext{ for } h$$
 real, 2 , at

 $P(X=0)=1-\frac{\operatorname{tr}_{+\mu\rho}}{\operatorname{tr}_{+\mu\rho}} \qquad \text{and} \qquad P(X=x)=e^{-\mu}\frac{G}{\operatorname{tr}_{+\mu\rho}} \qquad \text{for } P \text{ to al. } 2, \text{ teal,}$ with 0 < r < 1. Here the two parameters of the original the two parameters of the original $PD_{11} = \frac{\delta}{\lambda_{11}} \frac{\delta}{\lambda_{12}} \frac{\delta}{\lambda_{13}} \frac{\delta$

$$\lambda = \mu \rho, \ \phi = 1 - e^{-\mu + \mu}$$
 and variance of ZIPD are seven by
$$E(X) = (1 - \phi)\lambda, \quad V \quad \text{in } i = (1 - \phi)\lambda$$

The moment generating function $M_X(\mathbb{R}^d)$ and $\sqrt{\operatorname{he}^{-X}}$ arac $^{\mathcal{O}^{\mathbb{P}}}$ istic function $\Phi_X(t)$ a: e given by

Now it should be clear why a ZIP distribution is $x = \frac{1}{2} + \frac$

$$P_{w}(Y^{w}=y) = \frac{\operatorname{gl}_{y})P[Y^{y}]^{y}}{E[u](Y}$$

d stribution as a weighted version of a)

where Y is a usual Poisson random vary $\{e, S\}$ be well to consider the ZIP sson densibut Cn, then

$$rac{w(y)}{E[w(Y)]} \stackrel{|}{\Phi} 1 - q$$

for y > 0 and

$$\frac{w(0)}{E[w(Y)]} = 1 + \delta,$$

here $\delta = \frac{\phi(1-e^-)}{e^{-\lambda}}$. As a result, denoting E[w(Y)] by A, we have $w(0) = A(1+\delta)$ and $w(y) = A(1-\phi)$ for y>0. One observes that A can take any positive value. So, it is good enough to choose $u(0) = 1+\delta$ and $w(y) = 1-\phi$ for y>0 where $\delta = \frac{(1-e^{-\lambda})}{e^{-\lambda}}$. Therefore, the LIP distribution is nothing but a weighted overdisposed Poisson distribution with the weight is w(y) chosen as a love for each $y\geq 0$

Conditional and Unconditional Distributions of Sums of Z-IP Variables

I order to discuss parametric inference for a ZIF distribution, one has to know the distribution of the convolution of i.i.d. ZIF variables. For this, we first observe that if X_1, \dots, X_n are independent ZIP variables with X_i having parameters (ϕ_i, λ_i) or i = 1, 2, ..., n and if $Z = X_1 + \cdots + X_n$, then using induction on n,

$$I(Z=z) = \prod_{i=1}^{n} \phi_{i} I(1=0) + \sum_{r=1}^{n} \sum_{(i_{1},...,i_{r})} \prod_{l=1}^{r} (1-\alpha_{i_{l}}) \prod_{j=1,j\neq i_{1},...,i_{r}}^{k} \alpha_{j} e^{-\sum_{i=1}^{k} \frac{(\sum_{i=1}^{k} \lambda_{i_{l}})^{z}}{z!}}.$$

 \mathbf{b}_{i}^{\dagger} case the X_{i} s are i .d. with common parameters (ϕ, λ) , the convolution distribution reduces to

$$P(Z=z) = \begin{cases} \sum_{i=1}^{n} I(z=0) + \sum_{i=1}^{n} {n \choose r} (1+\phi)^r \phi^{(n-r)} e^{-r\lambda} \frac{(r\lambda)^z}{z!}. \end{cases}$$

This can also be wri en as

$$P(Z = 1) = \phi^n I(z = 0) + \sum_{r=1}^n P(Y_n = r) P(Z_r = z),$$
 (2)

where Y_n is Binomia with parameters (n,ϕ) and Z_n is Poisson with parameter i. This can also be derived using a different nethod. One can start out by finding the condition i joint distribution of $X_1, X_2, ..., X_n$ given $n_0 = j$ and the nearginal distribution of i of i of i of i of i the number of zero values among the i is i it can be show that the conditional joint i is tribution of i of i is i in i in i in i is i in i in

$$P(X_1 = x_1, ..., x_n) = x_n | n_0 = j) = \binom{n}{j}^{-1} \left(\frac{e^{-\lambda}}{1 - e^{-\lambda}}\right)^{n-j} \frac{\lambda^{\sum x_i}}{\prod_{i=1}^n x_i!}.$$

Now, for j=0, one observes that the conditional joint differential in injurious of $X_1,X_2,...,X_n$ given $n_0 = 0$ is the same as the unconditional joint dist bution of n i.i.d. truncat d Foisson rand m variables $X_1^*, X_2^*, ..., \sum_{n=1}^{\infty}$ (trunc ted at zero), which is giv n by

$$F(X_1 = x_1, ..., X_n = x_n | n_0 = 0) = \prod_{i=1}^n \frac{1}{(1-x_i)^n} \left| \frac{-\lambda \lambda^{x_i}}{e^{-\lambda} x_i} \right|^{-\lambda x_i}$$

No ce that this is free from ϕ . From this, we can derive the conditional pmf of $Z := \sum |X_i|$ given $n_0 := 0$ to be

$$P(\sum X_i = k | n_{ij} = 0) = \left(rac{\xi_n(k)}{n^k}
ight) (1 - e^{-\lambda})^{-1} \left| rac{1}{i} P(Z_n = k),
ight.$$

where $Z_n \sim \text{Poisson}(n\lambda)$ and $\xi_n(k)$ is a known, parameter-free function. For n=2, $\xi_2(k)=2^k-2$; for n=3, $\xi_3(k)=3^k-3.2^k+3$, and so forth. In general the b is a recursive formula for $\xi_n(k)$ as follows:

$$\xi_r|(k) = \sum_{l=n-1}^{k-1} \binom{k}{l} \xi_{n-1}(l).$$

Now, it can be shown that the conditional proof of $Z = \bigcup_{i=1}^n X_i$ given $n_0 = k$ is

$$P(\sum_{i=1}^{n} X_{i} = a \mid n_{0} = k) = \frac{\xi_{n-k}(a)}{(n-k)^{a}} (1 - e^{-\lambda})^{-(1 \mid r-k)} P(W = a),$$

where V has a usual Poisson distribution with parameter $(n-k)\lambda$. This is exactly the same as $P(\sum_{i=1}^{n-k} X_i = a \mid n_0 = 0)$. Finally, one easily observes that n_0 is Binomial with parameters n and $\phi - (1 - \phi)e^{-\lambda}$ and multiplying this with the conditional pmf of $Z = \sum_{i=1}^{n} X_i$ give i $n_0 = k$. ields the unconditional distribution of Z mentioned earlier.

We now move on to conditional distributions. We stirt with the conditional pm of X_1 give $X_1 + X_2$. A little algebra will reveal that

$$P(X_1 = j | X_1 + X_2 = k) = \frac{a+b}{c+d}$$

$$c=2\phi(1-\phi)e^{-\lambda}rac{\lambda^k}{k!},\quad d=(1-\phi)^2e^{-2}\left[rac{(2\lambda)^k}{k!}
ight]$$

and either $a=0,\,b=\left(\begin{array}{c} \frac{1}{3}\\ \frac{1}{3}\end{array}\right)\left(\frac{1}{2}\right)^kd$ or $a=\left(\begin{array}{c} c\\ \frac{1}{2}\end{array}\right)^kd$. In general, the conditional pmf of $\sum_{i=1}^{m} X_i$ given $\sum_{i=1}^{n} X_i$ (for $m \leq n$) involves both the parar eters and can not be expressed by such a simple tormula. This is unlike the ordinary Poisson distribution where the conditional pmf of $\sum_{i=1}^{m} X_i$ given

 $\sum_{i=1}^{n} X_i = k$ (for $m \le n$) is I inomial $(k, \frac{m}{n})$. But, in the scase of ZIP variables, if we continue the conditional pmf of $\sum_{i=1}^{m} X_i$ given $\sum_{i=1}^{n} X_i = k$ (for $m \le n$) and $n_0 = k^*$, then it turns out to be parameter-free, although not binomial. For $k^* = 0$, it is actually symmetric. For example,

$$P(X_1 = 1 | X_1 + X_2 = \frac{k}{4}, n_0 = 0) = 1;$$

$$P(X_{1} = 1 | X_{1} + X_{2} = 3, n_{1} = 0) = P(X_{1} = 2 | X_{1} + 1 | 2 = 3, n_{0} = 0) = \frac{1}{2};$$

$$P(X_{1} = 1 | X_{1} + X_{2} + X_{3} = 2, n_{0} = 1) = \frac{1}{3}, P(X_{1} = 1 | X_{1} + X_{2} + X_{3} = 2, n_{0} = 1) = \frac{2}{3};$$
etc. The general formula for $P(X_{1} = l | X_{1} + l | X_{2} = k, n_{0} = 1)$ is given by

$$P(X_1=l|X_1\stackrel{1}{
ightharpoonup}X_2=k,\,n_0=0)=\left(egin{array}{c}k&&&&\\l&&&&\xi_2^{-1}(k)\end{array}
ight)$$

Similar. V

$$P(|\mathbf{Y}| = l | X_1 + X_2 + X_3 = k, n_0 = 0) = \sum_{k=1}^{k-l-1} \frac{k!}{l!m} \frac{k!}{|k-l-m|!} \xi_3^{-1}(k)$$

$$P(X_1 \mid A \mid X_2 = l \mid X_1 + X_2 + \lfloor X_3 = k, \ n_0 = 0) = \sum_{m=1}^{l-1} \frac{k!}{m} \frac{k!}{l-m!!(k-l)!} \xi_3^{-1}(k)$$

In gene 1 l, for m < n,

$$P(\sum_{i=1}^{m} \sum_{l=1}^{l} | = l | \sum_{i=1}^{n} X_i = k, n_0 | = 0) = \sum_{l_1} \cdots \sum_{l_m} \sum_{j_1} \cdots \sum_{j_m | = m} \frac{k!}{l_1! \cdots l_m! j_1!} \frac{k!}{\cdots j_{n-m}!} \xi_n^{-1}(k)$$

where $\sum_{i=1}^{n} l_i = l$ and $\sum_{i=1}^{n-n} j_i = k-l$.

4 Parametric Inference for a ZIP Distribution

As men if oned earlier, the mean and the variance of a Z γ distribution ϵ regiven by

$$E(X) = (1 - \phi)\lambda, \quad V(X) = (1 - \phi)\lambda(\langle \cdot | + \phi\lambda)$$

So, if X $X_2, ..., X_n$ is a random sample from a ZIP distribution with parameters (ϕ, λ) , then $1 - \frac{\bar{X}}{\lambda}$ is an unbiased estimator for ϕ if λ is shown, whereas $\frac{\bar{X}}{1-\phi}$ is an unbiased estimator of λ if ϕ is known. But, in general, both ϕ and λ will be unknown; and there is no sample-based unbiased estimator for the parameter-vector (ϕ, λ) . However, it is easy to obtain the method of moments (MOM) estimations which are

$$\hat{\lambda}_{MOM}$$
 : $\frac{\hat{\chi}}{\hat{\chi}_i} = \frac{X_i^2}{X_i} - 1$, $\hat{\phi}$ $\gamma_M = 1 - \frac{n\bar{X}^2}{\sum X_i^2 - \sum X_i}$

The sample liellihood for ion is give

$$L(\phi, |x_1, ..., |x_n) = (\phi + (1 - e^{-\lambda})^{n_0} ((1 - \phi)e^{-\lambda})^{n - n_0} \frac{\lambda^{\sum x_i}}{\prod x_i!}$$

by solving

where n_0 is on le again the limber of z = bs in the sample. From this, it is easy see that the naximum like hood estine tors for the parameters can be obtain

$$\hat{\lambda}_{MLE} = \hat{\hat{\lambda}}_{MLE}^{ar{X}}, \ \hat{\phi}_{MLE}^{ar{1}}, \ \hat{\phi}_{MLE}^{ar{1}} = rac{(n_0/n) - e^{-\hat{\lambda}_{MLE}}}{1 - e^{-\hat{\lambda}_{MLE}}}$$

unconditional lignifical collision is α as well, since I (Type I error $\mid H_0$) is equal

For this pair ϕ f equa or ϕ no analyter solution exists and it must be solved numerically, which invilve the Lambe 1 s W function (see, for example, Corless et al. (1993)). In Apper x 2, we refer the results from simulation studies conducted to explore the lias and the variance of the estimators mentioned above as functions of the two parameters. From the likelihood function, at should be clear that the $\{\{1\}\}$ vector $\{\{0\}\}$, $\sum X_i$) is jointly sufficient for the two parameters $(\phi + \lambda)$. In fact $\frac{1}{2}$ can be so from that they are minimally sufficien $\frac{1}{2}$ Now suppose that ζ_1, \ldots, X_n are A d. following a $ZIP(\phi_1, \lambda_1)$ distribution, Now suppose that ζ_1 , X_n are id. following a $ZIP(\phi_1, \lambda_1)$ distribution, Y_1, \ldots, Y_n are i.i.d. fillowing a $ZIP(\cdot), \lambda_2$ distribution and we want to the two samples. Under I_0 , $n_0 + m_0$ as a Binon ial $(2n, \phi)$ pmf where ϕ is the common value of ϕ_1 and ϕ_2 if ϕ_1 is observed to be ϕ_2 if ϕ_3 and ϕ_4 is observed to be ϕ_4 and ϕ_4 and ϕ_4 is observed to be ϕ_4 and ϕ_4 is o together induce a paration of the sar the space and here we are conditioning on those part tion cells. It the cond tonal test is performed at level a, the

$$\sum_{k=0}^{2n} \sum_{k^*=0}^{\infty} P(\mathrm{Ty}, \text{ e I error}, n_0 + m_0 + m_0 + k, \sum_{i=1}^{n} (X_i + Y_i) = k^*) . P(n_0 + m_0 = k, \frac{1}{n_0} (X_i + Y_i) = k^*)$$

This test is, it some terms a general action of the one introduced by Proborowski and Wilensk (11,12) for the quality of two Poisson means. borowski and VilenskV(1V)

5 The Conway

The CMP distribution w troduced by Conway and distribution under certain as follows:

for x=0,1,2,... and λ an $\left(\sum_{k=0}^{\infty}\frac{\lambda^k}{(k!)^\zeta}\right)^{-1}.$ One calls nothing but Poisson with than $e^{-\lambda}$, which may lead is an example of a usual Z for values of x>0, the values of x>0 of x>0, the values of x>0 of x>0

$$P(\sum_{i=1}^{n} X_i =$$

for k=0,1,2,... etc. This ϵ , the mean and the variance ϵ , the method-of-moments (1, $\zeta > 1$, the CMP distribution.

Now let us look at the per the The simplest one, namely the

$$P(X_1 =$$

Going one step further, w

$$P(X_1 = l | X_1 + J)$$

well-Poisson Distraution

the abbreviated form of the ell (1962) a so looks like a vertices. Here he probability

istribution .nt of the Z ass function

$$v) = \frac{|\lambda^x|}{(x!)^{\zeta}} \sum_{k=0}^{|\lambda^x|} \frac{|\lambda^x|}{(k!)^{\zeta}}$$

positive. For x=0, the refore, probability ve that for $\zeta=1$, this probability γ at 0 is biggoriant believe that the CMP distribution on the function associated with the function of a ZIP distribution of the unual Poisson distribution at the function of the unual Poisson distribution who is soon distribution. The function of the unual Poisson distribution at the function of the unual Poisson distribution who is soon with the function $(X_1, X_2, ..., X_t)$ which are i.i. $(X_1, X_2, ..., X_t)$ which are i.i. $(X_1, X_2, ..., X_t)$

$$\begin{array}{c} \frac{\lambda^k}{(k!)^c} \\ \frac{\lambda^n}{(k!)^c} \\ \frac{\lambda^n}{(j!)^c} \\ \frac{\lambda^n}{(j!)^c} \\ \frac{\lambda^n}{(i!)^c} \\ \end{array} = \sum_{i_n} \left(\frac{k!}{i_1!} \frac{k!}{\cdots i_n!} \right)$$

be prove by induct on on Calculation plicated in this case art discrete derivation filmators. It may be worth point and out that and outdispersed, as opposed to the overdispersed of the case of the

gional distribut ons associated that the CMI is $d=l(X_1+X_{12}+k)$ is given by

$$X_{2} = k = -\frac{\left(\begin{array}{c} k \\ l \end{array} \right)^{\zeta}}{\sum_{i=0}^{k} \left(\begin{array}{c} k \\ l \end{array} \right)^{\zeta}}.$$

$$=k)=\frac{\sum_{n=1}^{\lfloor j-k\rfloor}\left(\frac{k!}{l!m!(\lfloor k-l\rfloor},\frac{k!}{\lfloor j+l\rfloor},\frac{j!}{\lfloor j\rfloor}\right)^{\zeta}}{\sum_{i_1}\sum_{i_2}\sum_{i_1}\left(\frac{k}{i_1!i_2},\frac{k!}{\lfloor j!}\right)^{\zeta}},$$

رار (الجار

> e f e f

where i_1 -

 $_3 = k$. In get | ral, we have,

$$= l_1 | \sum_{i=1}^n X_i = k) = \frac{\sum_{l_2} \sum_{l_3} \cdots \sum_{l_n} \left(\frac{k!}{l_1! l_2! \cdots l_n!} \right)^{\zeta}}{\sum_{x_1} \sum_{x_2} \cdots |\sum_{x_n} \left(\frac{k!}{x_1! \cdots x_n!} \right)^{\zeta}},$$

where \sum_{i}^{r} Also, i

k-l and $\sum_{i=1}^n x_i = k$. $p_{m,n}(l,k) = P(\sum_{i=1}^m X_i = l | \sum_{i=1}^n X_i = k)$ for m < n, then,

$$p_{m,n}(l,k) = \frac{\int_{-\infty}^{\infty} \sum_{l_1} \cdots \sum_{l_m} \left(\frac{l!}{l_1! \cdots l_m!}\right)^{\zeta} \sum_{j_1} \cdots \sum_{j_{n-m}} \left(\frac{(k-l)!}{j_1! \cdots j_{n-m}!}\right)^{\zeta}}{\sum_{x_1} \cdots \sum_{x_n} \left(\frac{k!}{x_1! \cdots x_n!}\right)^{\zeta}}$$

 $\sum_{i=1}^{n-m} j_i = k - l, \sum_{i=1}^{n} x_i = k.$ sample of sign n from a CMP population, the likelihood func-

tion is giv

$$L(\zeta,\lambda|x_1,...,x_n) = \frac{\lambda^{\sum x_i}}{(\prod_{i=1}^n x_i!)^{\zeta} \Psi^n(\zeta,\lambda)},$$

factorial c

where $\Psi(\sum_{k=0}^{\infty}\frac{\lambda^k}{(k!)^{\zeta}}$ Then the vector $(\prod_{i=1}^nX_i!,\sum_{i=1}^nX_i)$ is jointly minimally int for (ζ,λ) . Now let us write $Y=\prod_{i=1}^nY_i=\prod_{i=1}^nX_i!$. Then Y_i takes value if Y_i takes value in Y_i takes value in negative integer x, then

regative that
$$i$$
 (i.e., then
$$P(X_i = x) = P(X_i = x) = \frac{\lambda^x}{(x!)^{\zeta} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k!)^{\zeta}}}$$

factorials, are differe to numbers :

So, we can $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx \, dx \, dx = P(Y = y \text{ where } y \text{ is the product of } n \text{ uniquely determined factorials } 0.25 \tag{2.5}$ e factorials of x_1, \ldots, x_n (it is not necessary that all x_1, \ldots, x_n et $y_i = x_i! + x_i! + x_i! = 1, 2, ..., n$. Suppose that the only distinct x_1, \ldots, x_n aris z_1, \ldots, z_k . Let n_i be the number of times z_i is present for $|i_i| |i_i| |2, \ldots, k$, so that $\sum n_i = n$. Then we have

$$\sum_{k=1}^{k} \frac{1}{1} \frac{1}{n_k} = y) = \frac{n!}{n_1!} \sum_{j=1}^{k} \left(\frac{\lambda^{z_j}}{(z_j!)^{\zeta} \sum_{l=0}^{\infty} \frac{\lambda^l}{(l!)^{\zeta}}} \right)^{n_j}$$

which is t

$$\Pr_{i:l} = \Pr_{i:l} = \Pr_{i:l} = \frac{n!}{\prod_{i=1}^{n} \frac{\lambda^{\sum x_i}}{\prod_{i=1}^{n} x_i!} (\zeta, \lambda)}$$

6 Zero-inflated Conway-Maxwell-Poisson distritution

The ze o-inflated CMP distribution is defined as

$$P(X=0) = \phi + (1-\phi)\frac{1}{\Psi(\zeta,\lambda)}$$

and
$$P(X = k) = (1 - \phi) \frac{\frac{\lambda^k}{(k!)^\zeta}}{\Psi(\zeta, \lambda)}$$

for $0 < \phi < 1$ and $k = 1, 2, \dots$, where $\Psi(\zeta, \lambda)$ is as in the previous section. Then the bollvolution distribution for two i.i.d. ZICMP random variables is given by

$$P(X_1 + X_2 = 0) = \left(\phi + (1 - \phi)\frac{1}{\Psi(\zeta, \lambda)}\right)$$

and
$$I_1(X_1 + X_2 = k) = 2\phi(1 - \phi)\frac{\frac{\lambda^k}{k!}}{\Psi(\zeta, \lambda)} + (1 - \phi)^2 \frac{\frac{\lambda^k}{k!}}{(U(\zeta, \lambda))^2} \sum_{l=0}^k \binom{k}{l}^{\zeta}.$$

In general, if we denote $G_{m,n}(k,\zeta) = \sum_{i_{m+1}} \cdots \sum_{i_n} \left(\frac{k!}{i_{m+1}! \cdots i_n}! \right)^{\zeta}$, then we have

$$P(\sum_{i=1}^{n}, \zeta_i = k) = \sum_{m=0}^{n} \binom{n}{m} \frac{\lambda^k}{k!} \left(\phi + (1-\phi) \frac{1}{\Psi(\zeta, \lambda)} \right)^{n,i} \left(\frac{1-\phi}{\Psi(\zeta, \lambda)} \right)^{n-m} G_{m,n}(k, \zeta).$$

If we condition on the event $n_0 = 0$ where n_0 is once again the number of zero values, the conditional pmf of $\sum_{i=1}^{n} X_i$ has a somewhat simpler form. Of course, n_0 itself is binomial with probability of success $f = \phi + (1 - \phi) \frac{1}{\Psi} \frac{1}{\zeta, \lambda}$.

The simplest case is

$$P(X_1 + X_2 = k | n_0 = 0) = \frac{\lambda^k}{(k!)^\zeta} \left(\frac{1}{\Psi(\zeta, \lambda) - 1}\right)^2 \sum_{l=1}^{k-1} \binom{k}{l}^{\zeta}$$

In general,

$$P(\zeta) = X_i = k | n_0 = 0) = \frac{\lambda^k}{(k!)^\zeta} \left(\frac{1}{\Psi(\zeta,\lambda) - 1}\right)^n \sum_{i_0} \cdots \sum_{i_n} \left(\frac{k!}{i_1! \cdots i_n!}\right)^{\zeta},$$

where i ach i_l is positive and $i_1 + \cdots + i_n = k$. Also, as in Section 3, it can be shown that $P(\sum_{i=1}^n X_i = k \mid n_0 = j)$ is the same as $P(\sum_{i=1}^{n-j} X_i = k \mid n_{-j} = 0)$. As for the conditional joint pmf of X_1, \dots, X_n given $n_0 = 0$, it is

$$P(X_1=x_1,\cdots,X_n=x_n|n_0=0)=rac{\lambda^{\sum x_i}}{(\prod x_i!)^{\zeta}}\left(rac{1}{\Psi(\zeta,\lambda)-1}
ight)^n$$

and, as was the case in Section joint pmf of n i.i.d. ero-trunc of a usual ZIP distripution, we which is

turns out

CMP ran ve the co the unconditional ext, as in the case $\int_{1}^{n} \text{given } \sum_{i=1}^{n} X_{i}$

$$P(X_1=l_1|\sum_{i=1}^n X_i=k,i]=0)=rac{\sum_{l_2}}{\sum_{m}}$$

$$0) = \frac{\sum_{l_2}}{\sum_x}$$

$$\frac{\frac{k!}{2!\cdots l_n!})^{\zeta}}{\frac{k!}{!\cdots x_n!})^{\zeta}},$$

with $\sum_{i=2}^n l_i = k-1$ and $\sum_{i=1}^n \frac{1}{1-k} = k$. Also, if we deno e $p_{m,n}(l,\cdot) = k$. m < n, then,

$$=k.$$

$$P(\sum_{i=1}^{m}$$

$$=k, n_0=0)$$
 for

$$p_{m,n}(l,k) = \frac{\left(\begin{array}{c}k\\l\end{array}\right)}{\sum_{l_1}\cdots\sum_{l_l}^{\lfloor l/l \rfloor}} \frac{l!}{l_1!\cdots}$$

$$\left\{ \sum_{i=1}^{j+1} \left\{ \frac{1}{j_1! \cdots j_{n-m}!} \right\} \right\}$$

for $\sum_{i=1}^{m} l_i = l$, $\sum_{i,j=1}^{n-m} j_i = l$ same as that of usual COM-Po

iulas are exactly

Generalized Zer

nflate

istribution

Angers and Biswas (2003) into inflated Poisson (he ceforth G and distribut

d the foll

$$\frac{1}{2} \frac{1}{2} = a + 1$$

$$P(X = \frac{1}{2}) = \phi + (1)$$
and
$$P(X = k) = \frac{1}{2} \left(\frac{1}{2} - \phi \right)$$

generalized zero

for k=1,2,... with the parameter satisfying 1, $0 \le \alpha < \lambda^{-1}$ and $\lambda > 0$. So, we parameter $\lambda > 0$ so, we have See the appendix for a proof o mean and the variance are give

j fact that

the picture. It is ZIP distribution.
$$| 1 + e^{-\lambda} |^{-1} < \phi < 0$$

$$| 2 + e^{-\lambda} |^{-1} < \phi < 0$$

$$| 2 + e^{-\lambda} |^{-1} < \phi < 0$$

and

$$V(X) = \frac{\left| \frac{1}{2} - \frac{1}{2} \right| - \phi \lambda^2}{\left| \frac{1}{2} - \alpha \lambda \right|^2}$$

The sample likelihood function

$$)\sum_{x_i} \prod_{i=1}^n \frac{(1+\alpha_i)^{n-i}}{i}$$

 $L(\alpha, \phi, \lambda | x_1, \dots, x_n) = (\phi + (1 - \alpha)^n)$

for the three 1 20,

 $(1+\alpha x_i)^{x_i-1}$) is jointl me is (α, ϕ, λ) . Under this 1, the pmf of $X_1 + X_2$ will be

nimally sufficient

 $F(X_1+X_2)$

 $=2(1-\phi)P(U_1-k)+(1-\phi)^2P(U_2=-k^{lpha\lambda k}rac{1+rac{k}{2}lpha}{1+klpha}\Big]^{k-1}$

, where U_i

 $(\alpha, -)$ for j = 1, and GP(a, b) is the paragraph given by

$$J = 0 = e^{-b}; P(l = k) = \frac{(1+ak)^{k-1}}{k!} \epsilon, \quad \frac{b^k}{b!}$$

for positive \mathbb{R} for values of k.

An alte \mathbb{R} expression for the pmf of $X_1 + X_2$ is

 $P(X = \begin{cases} 0 & \text{if } 1 \\ 0 & \text{if } 1 \end{cases} = 2\phi(1 - \phi)^{2} ? (V_{1} = k) + (1 - \phi)^{2} I \quad [0] + V_{2} = k)$

where $V_j \sim \{(\lambda_j, \lambda_j)^{t_j}\}$ or $j=1,2,\ldots$ e can go two steps fix j j pmfs of $X_1 \sim \{(\lambda_j, \lambda_j)^{t_j}\}$ and $X_1 + X_2 + X_3 + X_4$ as follows j $(i,j,\lambda)^{n}$ or j=1,2. The can go two steps for j by and obtain the

$$2 + X_3 = k$$
 $3P(X_1 = 0)P(X_2 + x_1) = k$

$$1 - \frac{1}{3} \sum_{k_1, k_2, k_3 \neq 0} \frac{1}{i!} \frac{(1 + k_i \alpha)^{k_i - 1}}{k_i!} e^{-\lambda(3 + \frac{1}{3})^{k_i}} k,$$

 $\int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \operatorname{ove}^{\left[\frac{1}{2}\right]} \operatorname{addir}^{\left[\frac{1}{2}\right]} \operatorname{positive}^{\left[\frac{1}{2}\right]} \operatorname{cgers}^{\left[\frac{1}{2}\right]} k_{2}, k_{3} \operatorname{addir}^{\left[\frac{1}{2}\right]} \operatorname{ove}^{\left[\frac{1}{2}\right]} \operatorname{to}^{\left[\frac{1}{2}\right]} k_{3}.$ This sim-

Next,

 $P(X_1 + (1-\phi)^3 F_1 | V_1 + V_2 + V_3 = k).$ $P(X_1 + (1-\phi)^3 F_2 | V_1 + V_2 + V_3 = k).$ $P(X_1 + (1-\phi)^3 F_3 | V_1 + V_2 + V_3 = k).$ $P(X_1 + (1-\phi)^3 F_4$

where the

 $(X_1 + X_2 + X_4 = k) = (4\phi(1-\phi)[\phi + (1-\phi)]^2)^2 P(V_1 = k)$ $-12 \left[1 - \phi \right]^{2} [\phi + \frac{1}{2} - \phi] e^{-\lambda} P(V_{1} + V_{2} + \frac{1}{2} + (1 - \phi)^{4} P(V_{1} + V_{2} + \frac{1}{2} + V_{3} + V_{4} = k).$

In general, by	k n		
$P(X_1+\cdots+X_n)$	7		$-\phi) \qquad \qquad e^{-\lambda}]^{n-j-1}P(V_1+\cdots+V_j=k)$
			4+ k).
Suppose we h	v d		hen, we this for $n+1$ as follows:
$P(X_1 + \cdots $	7		$+1$ $P(X_2 + \cdots + X_{n+1} = k)$
	Fann ag lag	1 :	$1_{e^{-\lambda[(n+1)+klpha]}\lambda^k}$
k_1			
$= (n+1)[\phi] + (1)$			$(-\phi)$ $e^{-\lambda}$ $P(V_1+\cdots+V_j=k)$
$+(1-\phi)^n F(V_1)$	Lu drvs liggs		$\frac{1}{k!}\int_{0}^{\infty}\frac{dk_{i}\alpha^{k}}{k!}(1-\phi)^{n+1}e^{-\lambda[(n+1)+k\alpha]}\lambda^{k}$
n-1		20 ()	The Control of the Co
$=\sum_{j=1}^{n} n^{j}$		1% 74	$P(V_1 + \dots + V_j = k)$ $P(V_1 + \dots + V_j = k)$ $V_n = k$
			$igg _{n=0}^{\infty} P(\mathfrak{T}_n) = igg _{n=0}^{\infty} P(\mathfrak{T}_n)$
		F^{5}	$ \mathcal{J}_{n} $
-j -), (₁	$\frac{1}{e^{-\lambda[(n+1)+k\alpha]}\lambda^k}$
$\frac{n}{n}$	17		
$=\sum_{j=1}^{n}$	l Charles		$P(V_1+\cdots+V_j=k)$
:	In the second	i i	$+\cdots$ $+1=k$)
8 Bayes	i (Carry)	# / 	$+\cdots$ (r) $+i=k$ $Model$
Bayesian anal	234.1 1 101.1		kes a Gamma density as a nalysis of a CMP model has
conjugate pric been discussed			nalysis of a CMP model has generalized Poisson model
can be found a zero-inflated	I i i i i i i i i i i i i i i i i i i i	(1)	i et al. (2006) introduced sludes the ZIP model as a
special case ar			a generalized linear model
setup with cov and an approp			f that f that f the f that f is a second constant f that f is a second constant f that f is a second constant f is a second c
we adopt ει di			we d a sayesian hierarchical model
:			1 13 average is
1			ringer fra dan h
:	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	神	[1] 在 2015
,	I DANNER & PEST		

that le Then i.i.d. 2

Su senting treatn 1 count assum

laturally to a method f to esent a conjugate E ay s'a ındom variab es.

we have independent an counts of ind vidual v io: administered independently ved under the j^{th} t leading $Y_{jk} \sim ZIP(p,\lambda_{jk})$ I ct

 $\operatorname{pr}(Y_{jk} = y) = bI y =$

es fron pond i
$$K$$
 tim $(j =$

J IP populations | ay, repre-

-sampl

analysi

cs from pond i

$$K \text{ tim}$$
 $(j = \frac{1}{2})$

words

 ϕ) $(Y_{jk}^* = y)$

Then we model $\log(\mathbb{P}_{ik})$ as

(o multi-sample) e mparison.

for the sum of (cor litionally)

articular way to I different et Y_{jk} be the k replicate, J and k = 1, ..., K). We

(3)

 $<\phi<1$, where Y_{jk}^* by Levi sa for sor

$$\log\left(2\left|k\right|\right) \left|\beta_{j}+\epsilon_{j}\right|, \qquad (4)$$

belief appror | effects class of the

温尘

the random residual pin I component in the lim 1-fun here may be unexp. ai [ad] ∥ natory variables the t vere \ nt reco for Poisson data set vi vi vi over-c n GLMs is discussed in Substal. (eralized linea mixec 1 o de (Zeger Clayto 93). Equation (3) be ile do to

ion sp urces c

nent for owing Normal $(0, \sigma_{\epsilon}^2)$ ification is consisted with the valiation in the dal , perhaps ed at first. This is rticularly pe sion. The use f residual 00 and is a special ase of the inc Karim, 1991; F isslow and

$$\log(\lambda k) \sim 1 \operatorname{rmal}(\beta \log \sigma_{\epsilon}^{2}) \tag{5}$$

with the other v

where $j_i \downarrow j_i$ the effect of the j^{th} breat j_i the j_i this hierarchics deltand center the para archic for efficient MCMC sampling (Gelfand et al.,1 deltand be the NC m d L, erse G m a family of conjugate distribution which, the mean follows a granul cuttr bution condition by on the variance marking layer blows in Hyerse-Gamma custribution per-prior parameter: variately having the appropriate sufferipts. In

$$egin{array}{lll} heta, \sigma^2 & \sim & \mathcal{N} \ \mathcal{L}(\theta_0) & \langle u,v \rangle & \text{in ics that} \\ heta & \sim & \mathcal{N}(\theta_0) & \text{and} \\ heta^2 & \sim & \mathcal{L}(\theta_0) & \langle u,v \rangle & \text{in its that} \\ \end{array}$$

otation in mind, this is hop we specify

$$eta_j, \sigma^2_{eta} \sim f(t_0^1, \tau, \sigma^2_{eta}, u, \pi, \eta^2, \pi)$$
 $\mu, \sigma^2_{\mu} \sim f(t_0^1, \sigma^2_{\mu}, u, \pi, \upsilon_{\mu, \pi})$

Howev from t (2002)tent val

e specification of the Paro fation ar Imeter makes the sampling onditional) posterior d_{s}^{ij} t $i \mid |$ tion $ex_{[i]}$ eriely difficult. A_{ξ_{+}} rwal et al Ghosh et al (2006) c every $\|\mathbf{y}\|$ and $\|\mathbf{t}\| \to \|$ oblem by introc $\|\mathbf{c}\|$ cing a la-. In the present con $\{e_i^{(t)}, \{d_j^{(t)}\}$ oting $t \mid j \mid k \mid j$ ent variable con esponding to Y_{jk} by Z_{jk} , the complete likelihood of t data is $L(y, z \mid \phi, \lambda) =$

$$\prod_{j} \prod_{k} \phi^{z_{jk}} \left\{ (1 - \phi)^{\frac{e}{e}} \middle| \int_{jk}^{j_k} \lambda_{jk}^{y_{jk}} \right\}^{1 - z_{jk}}$$

$$(6)$$

or, equivalently, $L(y, z \mid \phi, \lambda) =$

$$\phi^{n_0}(1-\phi)^{n-n_0} \prod_{y_{jk}>0} \frac{e^{-\lambda_{jk}}\lambda}{y_{jk}!} - \prod_{y_{jk}=0} (e^{-\lambda_{jk}})^{1-z_{jk}}, \tag{7}$$

where $n_0 = \sum_j \sum_k z_{jk}$ and n = JK.

We assume a Beta(a,b) prior on ϕ and elicit conjugate priors for all the variance parameters. In summary, our hier exchical model is given by:

$$Y_{jk} \sim ZIP(\phi, | k)$$
 $\phi \sim Beta(a, | \log(\lambda_{jk}) \sim Normal | j_j, \sigma_{\epsilon}^2)$
 $\sigma_{\epsilon}^2 \sim \mathcal{IG}(u_{\epsilon,\pi} | \beta_{\epsilon,\pi}^2)$
 $\beta_j, \sigma_{\beta}^2 \sim \mathcal{NIG}(\mu, | \beta_{\beta}, u_{\beta,\pi}, v_{\beta,\pi})$
 $\mu, \sigma_{\mu}^2 \sim \mathcal{NIG}(\mu, | \gamma_{\mu}^2, u_{\mu,\pi}, v_{\mu,\pi})$

Sampling from the posterior distribution is can be performed using a block Gibbs sampler. All the conditional distributions except for those of the λ -values and ϕ have conjugate forms. Using atom variables has the advantage that sampling from the conditional distribution of the zero-inflation parameter reduces to sampling from its conjugate di ribution. However, a Metropolis-Hastings step is needed for drawing the radius and a log-Normal proposal distribution will work. We would prefer uhing relatively flat priors for all the variance parameters.

Next we move onto a conjugate Bayes analysis of $Z = \sum_{i=1}^{n} X_i$ where X_1, \ldots, X_n are conditionally i.i.d. ZIP (λ^n) variables given the parameters. One can assume that

e can assume that (i)
$$\lambda$$
 has an a priori $\Gamma(\mu,\alpha)$ density giv
$$f(\lambda) = \frac{\mu^{\alpha}}{\Gamma(\alpha)} \lambda^{\epsilon} \left[\frac{1}{1} e^{-\mu \lambda} \right]$$

for $\lambda > 0$ and a positive integer α ;

(ii) ϕ has an a priori Beta(a,b) density f pr some a>0 and b>0 (one can cho ose a = b = 1 yielding a U(0,1) prior);

(iii) λ and ϕ are independent, in which $\int_{\mathbb{R}^n} ds$ the joint prior density denoted by $h(\lambda, \phi)$ will be the product of the above wo.

Then, if $\{X_1, X_2, \dots, X_n\}$ implies that $Z = \sum_{i=1}^n X_i$, wi the usual posterior calculation marginal distribution of Z is

in (1), which (2), one does onditional or

$$P(Z=z) = \frac{1}{n+1} \quad (0) + \frac{1}{n+1}$$

$$0) + \frac{1}{+} \sum_{k=1}^{n} P(N_r =$$

The posterior

joint distribution of
$$\lambda$$
 and ϕ is
$$[\phi^n I(z=0) -$$

where N_r is negative binor

$$\frac{\left|P(Y_n \in \mathcal{Y}) \cap Z_r = z\right|}{|P(Y_n \in \mathcal{Y})|} \frac{1}{|P(N_r)|}$$

Appendix 1A: Probability Consider the paper by Consul Poisson distribution as follows (111).

mcti d the GZIF

tribution \bot a generalized

$$P(X=x|\lambda_1,\lambda_2) \stackrel{q}{=} (\lambda_1+x^{i_1})^x \mid e^{-(\lambda_1+x\lambda_2)}$$

for $x = 0, 1, 2, \dots$ so that

$$F^{1,\frac{3}{2}}\lambda_{1},\lambda_{-\frac{3}{2}}=$$

so that $P(X = x | \lambda_1, \lambda_2)$ is not th

 $\inf_{i \in \mathbb{N}} \text{nsider } \lambda \geq 0$ ting $\lambda_2 = 0$,

1. They used one-dimensional

Te's for in to prove the

$$\phi(z) = \phi(0) + \sum_{x=1}^{\infty} \left[\sum_{\substack{i=1,\dots,1\\i=1,\dots,1\\i=1,\dots,k}} \left[f(x_i, i, \phi_{i-1}, i) \right] \right]_{z=0} \left(\sum_{\substack{i=1,\dots,1\\i=1,\dots,k}} x_i \right)$$
(8)

where $\phi(z) = e^{\lambda_1 z}$ and $f(z) = (\sqrt{\epsilon_1 + \frac{1}{2}})$ with $\sqrt{1 + \frac{1}{2}}$ shown that

$$\left(\frac{d^{x-1}}{dz^{x-1}}[f(z)]^{\frac{1}{1-x}} \left[\frac{1}{2} \cdot \frac{1}{2} \right]^{\frac{1}{1-x}} \right]_{z=0} = 2 \cdot \lim_{z \to \infty} \left(\frac{1}{1-z} + \lambda_2 x \right)^{x-1}$$

so that (8) becomes

$$e^{\lambda_{1}z} = \sum_{x=0}^{\infty} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} + \lambda_{2} \frac{1}{1} \frac{z}{1} - \frac{1}{1} \left(\frac{z}{f(z)}\right)^{x} \frac{1}{1} \frac{1}{1$$

This is true for all z. So, substituting

$$e^{\lambda_1} = \sum_{x=-\infty}^{\infty} \frac{1}{x!}, + \lambda_1$$

which implies

$$1 = \sum_{n=0}^{\infty} \frac{1}{x} \left[\frac{1}{1} \left(\sum_{n=1}^{\infty} \lambda_2 x \right)^2 \right] + \lambda_2 x$$

so that the right hand side is 1. this $\int I = x | \lambda_1, \lambda_2$. Now substituting $\lambda_1 = \lambda$ and $\frac{\lambda_2}{\lambda_1} = \alpha$ in ϵ $\int V = x | \lambda_1, \lambda_2$. Now substituting $\lambda_1 = \lambda$ and $\lambda_1 = \alpha$ in ϵ $V = \lambda_1, \lambda_2 = \alpha$ in ϵ $V = \alpha$ $\lambda_1 = \alpha$ $\lambda_1 = \alpha$ $\lambda_1 = \alpha$ $\lambda_1 = \alpha$ $\lambda_2 = \alpha$ $\lambda_1 = \alpha$ $\lambda_1 = \alpha$ $\lambda_2 = \alpha$ $\lambda_1 = \alpha$ $\lambda_2 = \alpha$ $\lambda_1 = \alpha$ λ_1

$$X = x | \lambda, \quad) = 1 + \alpha$$
 (1+\alpha)

which is nothing but $U \sim GP(\frac{1}{2},\lambda)$ ur nothing but $U \sim GP(\frac{1}{2},\lambda)$ ur nothing but $U \sim GP(\frac{1}{2},\lambda)$

$$\sum_{i=0}^{\infty} P(X=x|\lambda,\alpha_i] = \sum_{i=1}^{|\alpha_i|} \sum_{j=1}^{|\alpha_i|} (1+\sum_{j=1}^{|\alpha_i|} (1+\alpha_i)^{\lambda}) = 1$$

Therefore, if we go to zero-inflate $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ ralize $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ a distribution where

$$P(X=0) = \phi + (1-\phi)e^{-\lambda}; \lim_{\lambda \to 0} (X \cup_{\lambda \to 0}^{\lfloor 1/\delta \rfloor}) = (\lim_{\lambda \to 0}^{\lfloor 1/\delta \rfloor})$$

$$P(X = 0) = \phi + (1 - \phi)e^{-\lambda}; \quad (X | \frac{1}{\lambda}) = (\frac{1}{\lambda})e^{-\lambda}; \quad (1 + \alpha x)^{x-1}e^{-(1+\alpha x)\lambda}]$$
for $x > 0$, then we get
$$\sum_{i=0}^{\infty} P(X = x) = \phi + (\frac{1}{\lambda})e^{-\lambda}; \quad \frac{\lambda}{x!}(\frac{\lambda}{x!}) = (\frac{\lambda}{x!})e^{-\lambda}; \quad \frac{\lambda}{x!}(\frac{\lambda}{x!})$$

Appendix 1B: Expectation of $\epsilon^{(0)}$ in P

Here we derive the mean of a z to it is a pd ger to li to Poisson distribution. For this, we go back to the paper $y \in \mathbb{R}$ and $y \in \mathbb{R}$ by $y \in \mathbb{R}$ and work with $y \in \mathbb{R}$ this as they are allowing negative values of λ_2 . In our $x \in \mathbb{R}$ and $x \in \mathbb{R}$ rentiate $y \in \mathbb{R}$ and arrive at the following:

$$\lambda_1 e^{\lambda_1 z} = \sum_{x=1}^\infty rac{\lambda_1 (1+x)}{x-1} \int_{-1}^{1+x} rac{x-1}{x-1} \int_{-1}^{1+x} rac{d}{x-1} \int_{-1}^{1+x} xz (1-\lambda_2 z)$$

which is same as

$$rac{\lambda_1}{1-\lambda_2 z} = \sum_{x=1}^{\infty} \left[\frac{\left|\left(\lambda_1 \right| \int_{0}^{1} \left|\left(\lambda_1 \right|^2 \right)^x}{\left|\left(\lambda_1 \right| \left|\left(\lambda_1 \right|^2 \right)^x} \right|^{x} \right] \right]$$

Now putting z = 1 once again, we get

$$(1+\alpha x)$$

$$-(1+\alpha x)\lambda = 1$$

$$\left[(1 + \alpha x)^{x-1} e^{-(1+\alpha x)\lambda} \right]$$

$$e^{-1}e^{-(1+\alpha x)\lambda}=1$$

$$^{xz}(1-\lambda_2 z) \tag{10}$$

$$|_{-(\lambda_1+\lambda_3x)z}$$

$$\frac{1}{1 - \frac{1}{\lambda_2}} = \sum_{x=1}^{\infty} \frac{\lambda_1(\lambda_1 + \lambda_2 x)}{(x-1)!} - \frac{1}{\alpha} e^{-(\lambda_1 + \lambda_2 x)}$$

On bserve that the right hand side is the expectation of X so the Substituting $\lambda_2 = 0$, one can see at it is the mean of T-Po stribution low, coming back to the generalized Poisson (x, λ) , we get $E(X) = \sum_{x=1}^{\infty} \frac{\lambda^x (1 + x)}{x^2}$ Uzer

 $\frac{x)^{x-1}}{e^{-(1+\alpha x)\lambda}} = \frac{1}{1}$ ed general z d Poisson distribution he expectation is give

X) =ısual 1tion For

$$E(X) = 11 - \phi \sum_{x=1}^{\infty} \frac{\lambda^x (1 + \alpha x)^{x-1}}{x!} = \frac{\lambda (1 - \phi)}{1 - \alpha \lambda}$$

bag Tak 1C: Vasiance of a GZIP distraction (ext goal is to get the variance of the zero-inflated general) Tatin. For the sawe again go back to the equation (10). We can

ition

isson

$$\lambda_{1}^{2} = \sum_{i=1}^{\infty} \frac{\lambda_{1}(\lambda_{1} - \frac{\lambda_{2}x}{x^{2}})^{x-1}}{(x - \frac{\lambda_{2}x}{2})!} z^{x-2} e^{-\lambda_{2}xz} (1 - \frac{1}{2}z)^{2} - \sum_{i=1}^{\infty} \frac{\lambda_{1}(\lambda_{1} + \lambda_{2}x^{2})}{(x - 1)!} = \frac{\lambda_{1}(\lambda_{1} + \lambda_{2}x^{2})}{(x - 1)!}$$

wh s the plifies to

Su;

$$\lambda_1^2 \Big| \int\limits_{\substack{|\beta| \\ |\beta| + |\beta| |\beta| + |\beta| + |\beta| \\ |\beta| + |\beta| + |\beta| + |\beta| + |\beta| + |\beta| \\ |\beta| + |$$

$$z^{x-1}e^{-(\lambda_1+\lambda_2x)z}\lambda_2(2-\lambda_2z)$$

 $z = 1, v \in \mathbb{R}^{n}$

$$\lambda_1^2 \lim_{x \to 1} \frac{1}{n} \frac{(\lambda_1 + \lambda_2)^{v-1}}{(x-2)!} e^{-(\lambda_1 + \lambda_2 x)} (1-\lambda_2)^2 \sum_{i=1}^{t} \frac{\lambda_1(\lambda_1 + \lambda_2 x)^{x-1}}{(x-1)!}$$

$$^{(\lambda_2x)}\lambda_2(2-\lambda_2)$$

and hence 11) becomes

Second term without the negative gen is just E(X) multiple

$$\lim_{\substack{i \in \mathbb{N} \\ |x| = 1, \dots, |x| = 1} \sum_{i=2}^{\infty} \frac{\lambda_1 |x|}{|x - 2|!} \frac{1 + \lambda_2 x)^{x - 1}}{|x - 2|!} e^{-(\lambda_1 + \lambda_2 x)} \frac{1}{|x|} - \lambda_2)^2 - \frac{\lambda_1 \lambda_2 (2 - x)^{x - 1}}{1 - \lambda_2}$$

 $\frac{1}{2}$ one shows hat

$$\frac{\lambda_1(\lambda_1 + \frac{1}{\lambda_2}(x)^{x-1})}{(x - \frac{1}{\lambda_2})!} e^{-(\lambda_1 + \lambda_2 x)} = \lambda_1 \frac{\lambda_1}{(1 - \lambda_2)^2} + \frac{\lambda_2(2 - \lambda_1)}{(1 - \lambda_2)}$$

Now I add a set to but FIV(Y 1 Lin Consul and Jain's set up
Now $\int ds$ $\int ds$ $\int t$ $\int ut E[X(X-1)]$ in Consul and Jain's set up.
Final $\frac{\lambda_1^2}{1-\lambda_2)^2} + \frac{\lambda_1}{(1-\lambda_1)^3}$ it, we get $1 = \frac{\lambda_1}{(1-\lambda_2)^3}$
Final ting it, we get
$\left(\frac{1}{2} + \frac$
Subst $t = 0$ is a parameter of the usual Poisson distribution. Now, the parameter $t = 0$ is a parameter $t = 0$ is a parameter $t = 0$ is a parameter $t = 0$ in the usual Poisson distribution. Now, we get $t = 0$ is a parameter $t = 0$ is a parameter $t = 0$ is a parameter $t = 0$ in the usual Poisson distribution. Now, we get $t = 0$ is a parameter $t = 0$ is a parameter $t = 0$ in the usual Poisson distribution.
$E[$ $\left[rac{\lambda}{(1-lpha\lambda)^2}+rac{\lambda(2-lpha\lambda)}{(1-lpha\lambda)^3} ight]$
so the V_i that V_i is V_i V
(X^2) $\frac{1}{\epsilon}$ $\frac{1}{\epsilon}$ $\frac{1}{\epsilon}$ $\frac{1}{(1-lpha\lambda)^3}$; $V(X)=\frac{1}{(1-lpha\lambda)^3}$
Next, $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ in $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ generalized P ission distribution, we get $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
Addir $\frac{(1}{1}$ o sides, we get
$E = \begin{bmatrix} 1 & \lambda \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} \lambda \\ (1 - \alpha) \sqrt{2} \end{bmatrix} $
Final $(1-\alpha\lambda)^2$ [$(1-\alpha\lambda)^2$] both sides, we get
Finall $E = \begin{bmatrix} \lambda & \lambda & \frac{\lambda}{(1-\alpha\lambda)^2} - \frac{1}{(1-\alpha\lambda)^3} \end{bmatrix}$ $\frac{1}{1} \text{ sing } \begin{bmatrix} \lambda & \lambda & \frac{\lambda}{(1-\alpha\lambda)^2} - \frac{1}{(1-\alpha\lambda)^3} \end{bmatrix}$ $\frac{1}{1} \text{ both sides, we get}$ $\frac{1}{1} \text{ both sides, we get}$ $\frac{1}{1} \text{ constant } \frac{1}{1} \text$
Subst = 0.
Apper Sim 1 s for biases ϵ 1 d variances of estimators For the matrix of λ and ϕ that we may see that the report the results of some simulation studies regard bias in For a fixed value of $\phi \in (0,1)$, we generated
we me See that report the res its of some simulation studies regard bias ri For a fixed value of $\phi \in (0,1)$, we generated
$M = \{y_n\}$ in Figure 100 $\{y_n\}$ in $\{y_n\}$ $\{y_n\}$ $\{y_n\}$ $\{y_n\}$ is tribution with
$\lambda = 1$ and λ in mputed the bigs in the method-of-moments estim For λ in averaged the 1000 bias values and plotted
this a quantum aga $\frac{1}{4}$ A $\frac{1}{2}$ A reach λ , we computed the sample variance of
the 10 value of ϕ it against λ . We repeated this exercise for 9 difference of ϕ in g 9 ' λ vs. awage bias' graphs, represented
and the desired the second sec
re the first county 19
Time their same the first the same to be a second t
Very send of the s

1 colors, were superimposed. Sin resented by different colors, were: implemented the same procedure ords, we now fixed λ at an integer reated a ' ϕ vs. average bias' grap I = 1000 random samples of size h with $\phi = 0.01, 0.02, \dots, 0.09$. On aphs (represented by different cold iently, the same procedure was re 4 sets of graphs which are λ vs. : $\hat{\phi}_{MLE} - \phi)$ and ϕ vs. $\mathrm{var}(\hat{\phi}_{MLE})$. $_{11}|_{E}$

all of the above were carried out $\frac{1}{3}$ [ain with M=10000. It is clear LEs of both parameters are asymp $_{\gamma_{\parallel}}$ tically unbiased. For $\hat{\lambda}_{MLE}$ the the close to zero even for moderate f hues of λ such as 6 or 7. In the $\{\xi_B\}_{B}, \xi_B,$ the bias is negligible irrespectfule of ϕ for λ upwards of 5. The $\frac{1}{4} \int_{0}^{1/2} \sqrt[4]{\lambda_{MLE}}$, for the value-range of λ cor $\sqrt[4]{1}$ lered here, are below 0.4 excep¹ have treme values of ϕ . Also, it shows slight increasing trend with λ wariance of $\hat{\phi}_{MLE}$, the only one this stands out is the case $\lambda = 2$ $||\psi_1\rangle$ is aberrant behavior was caused by a computational error needs to be Moving on to the bias and the vigin ance of $\hat{\lambda}_{MOM}$, the bias shows a E-cutations in this case than for the E-but it is close to zero exception. The case than for the The extremely small values of ϕ . The variance of $\hat{\lambda}_{MOM}$ once again that increasing trend with λ and is the work of the value-range of λ ome extremely small values of ϕ . The bias in ϕ_{MOM} also shows more compared to that in the MLE arily the variance of $\hat{\phi}_{MOM}$ shows ϵ coff for advantage of a during around the mid-range of λ or some small values of λ).

arly, the 9 ' λ vs. $var(\hat{\lambda}_{MOM})$ berimposed.

th the roles of λ and ϕ switched value between 2 and 10 and in and a ' ϕ vs. $var(\hat{\phi}_{MOM})$ ' grapl $= 100 \text{ drawn from a ZIP}(\phi, \lambda)$ again, each of the two resulting + were superimposed.

ated for the MLEs of λ and ϕ $(\lambda_{MLE} - \lambda), \lambda \text{ vs. } \text{var}(\lambda_{MLE})$

Acknowledgr

the second author (Datta) was principally supported by the Depart Hillstitistics, Texas A & M University, the supported by the Depart Principal Cancer Institute ^明0301).

\mathbf{R}'' by lowaces

by.

gr

In

ea

ba

di

se

re

φ

 $h^{\scriptscriptstyle \dagger}$

bia

ca

va'

for

in:

lot

pe'

 As^{-1} W[⊭]

> 🤼 Jean-Francois, Biswas, Atanu, 2 📑 A Bayesian analysis of zero d generalized Poisson model. Com 2, p.37-46.

ational Statistics & Data Anal

[244] de Mo, J. del, Perez-Casany, Marta, 264: Overdispersed and underdis 斯爾Poisson generalizations. Journal 学Statistical Planning and Infer (\$\\\$34, p.486-500.

A.C.,1960: Estimating the paramers of a modified Poisson distri J. Amer. Statist. Assoc., 55, p.1.

143.

- [4] Consul, P.C., ain, G.C., 1973: A Generalizat | tion. Technometrics, 15 (4), p.791-799.
- the Poisso
- [5] Cox, D.R., 1933: Some remarks on overdisp p.269-274.
- 1. $Biometr_{\downarrow}$
- [6] Dahiya, R.C., Gross, A.J., 1973: Estimating the Poisson sample. J. Amer. Statist. Assoc., 58, p
- class from
- [7] Ghosh, S.K., Mukh pad hyay, P., Lu, J.C., 2006 inflated regress on models. J. Statist. Plan. Inf
- resian analy 3, p.1360-13
- [8] Gupta, P.L., Gupte, R.C., Tripathi, R.C., 1990 count data. Comput. Statist. Data Anal., 1:3, p
 - Alpalysis of ze
- [9] Heilborn, D.C.: 1989: Generalized linear mode hipo [altered zer ities and over dispersion in count data. Techn Epidemiology and Biostatistics, University of C
 - |l| Report, Dep fd nia, San F
- [10] Heilborn, D.C.: Gibson, D.R., 1990: Shared ne jele use and he concerning AIDS: egression modeling of zero session. Proceeding; of the Sixth International; For Francisco, CA.
 - early count d ference on
- [11] Kadane, J.B., Shmileli, G., Minka, T.P., Berle, Sepul Boatwrigh Conjugate analysis of the Conway-Maxwell-Poir In listribution Analysis, 1(2), p.363-374.
- [12] Kemp, A.W., 1986: We ghted discrepancies and a kimum like mation for discrete distribution. Commun. Stati A. Theory ar **15**, p.783-803.
- [13] Kokonendji, C.C., Mizere, D., Balakrishnan, N. 1908: Connection Poisson weight function to overdispersion and Middle dispersion. PLan. Inf., 138(5) p.1:287-1296.
 - with an app
- [14] Lambert, D., 1992: Zero inflated Poisson regres defects in manufacturing. Technometrics, 34, pillet
 - A., Peterso
- [15] Li, C.S., Lu, J. C., Park, J., Kim, K.M., Blinkle, P. A multivariate zero inflated Poisson distribution in its inference in the inference of the metrics, 41, p.29-38.
 - ntagious dil
- [16] Martin, D.C., Katti, S.K., 1965: Fitting of sor to some available data by the maximum likeliho, and thou bior. p.34-48.
- [17] Przyborowski, J., Wilenski, H., 1940: Hemog hair of results: samples from Foisson Series. Biometrika, 31, p. 463 323.

- [18] Saei, A., McGilchrist, C.A., 1997: Random threshold models applied to zero class data. *Austral. J. Statist.*, **39**, p.5-16.
- [19] Scollnik, D.P.M., 1995: Bayesian analysis of two overdispersed Poisson models. *Biometrics*, **51(33)**, p.1117-1126.
- [20] Shmueli, G., Minka, T.P., Kadane, J.B., Borle, S. and Boatwright, P., 2005: A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. J. Roy. Statist. Soc. Series C, 54(1), p.127-142
- [21] Singh, S.N., 1963: A note on inflated Poisson distribution. *J. Indian. Statist. Assoc.*, 1, p.140-144.