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. So, once again, this ZIP distribution has two parameters v and A and it is
clear that « is nothing but ¢(1—e~*). This definition is guided by the following
simple-minded intuition: increase the probability at 0 by a constant number .

One has to keep in mind that - should be less than 1 — e,
A second way of defining the ZIP distribution is:
P(X =0)=(}+8) e and
& L AT
PX=a)= - - f 0
(X =2a) (1+5 A' oy for >

This time, the two parameters are § and A and one can show that 4 is nothing
Y
but qﬁ(l—_f—l. This definition is guided by the following intuition: increase

[+
the probability at 0 by multiplying the original probability by a number bigger
than 1. Of course, one has to keep in mind that & should be less than e* — 1.
A third alternative definition of the same distribution is:

PX=0)=1—¢gttrr + e and

PX=x)=e" ﬁiif)m for k=1,2,.

with 0 < » < 1. Here the two paramei;ers are 7 and A. One can casily observe
that the two parameters of the original ZIPD, namely, (¢, A) can be recovered
from (p, ) as: A= pp, ¢=1— e #he,

The mean and variance of ZIPD are given by

BX)={1-@A VIX)={1-¢)A1+¢)

The moment generating function Ay (#) and the characteristic function @ x (t)
are given by

Mx(£) =g+ (1— ) e Bx(t) =g+ (1 — g) e T

Now it should be clear why a ZIP distribution is an example of an overdispersed
Poisson model. Next we look at a weighted version of a Poisson distribution. Tt
is given by

oy = WY =y)
P

where Y is a usual Poisson random variable. So, if we want to consider the ZIP
distribution as a weighted version of a Poisson distribution,then

wly) .
By ¢

for 4 > 0 and




w©)
Fu(vy ~

-\ ; ‘

whore § = Ségmj:%l As a result, denoting EJw(¥Y)] by A, we have w(0) =
e

A(1 + 8) and w(y) = A{1 — ¢) for y > 0. One obscrves that A can take any

positive value. So, it is good enough to choose 1{0) =1+ dland w(y) =1~ ¢

(1l —e™*)

for y > 0 where § = ————=. Therefore, the ZIF distribuiion is nothing but
e

a weighted overdispersed Poisson distribution with the weights w(y) chosen as
above for each y > 0. i

3 Conditional and Unconditional Distributions of
Sums of ZIP Variables

In order to discuss parametric inference for a ZIF distribution, one has to know
the distribution of the convolution of i.i.d. ZIP variables. For this, we first
observe that if X3, Xy, ..., X, arc independent ZIP variables with X; having
parameters (¢;, M) for ¢ = 1,2,..,n and if Z = Xy + --- 4 Xy, then using
induction on n, |

k

Pz =7 =[[oaG-0), ¥ [[0-a) I e Sl

i=1 7=l (i) 11 F=1,3E 0 i

.
In case the X;s are iid. with commbn parameters {@, A}, tha convolution dis-
tribution reduces to

i
™!
' . - X A z
P(Z=zy=g™l(z=0)+ ) ( . ) (1 ¢y QS(’*"')e':ﬂLz') :
=1 '
This can also be written as

ki3 .
P(Z=2)=¢"I(z=0)+ Y  P(Yp=7r)P(Z = 2), (2)
voor=1 |

where Y, is Binomial with parameters (n, ) and Z, is Poissen with parameter

rA. This can also be derived using a different method. One can start oud by

finding the conditional joint distribution of Xy, X3, ..., X, givién nig = 7 and the

marginal distribution of ng, where ng is the number of zero values among the

X;’s. It can be shown that the conditional joint distribution of Xy, ..., X,, given
g =] 18

-1 N Y
1 e A

=1, e Xp = Tplne =) =1 . . .

PX) =a1, .., Tn|ne = f) (] ) (1__6,)\) e, =t
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Sy Xi =k (for m < n) is Binomial (k, 2 n . But, in the case of ZIP variables,
if we consider the conditional pmf of $°7r | X; given 30 Xi =k (f01 m < n)
and g == £*, then it $urns out to be parameter-free, although not binornial. For
k* =0, it is actually symmetuc For example

P(Xy == 1§X1 + X5 = .;,, g =0) =1;
PX. =1llXi+X= 3, np = 0} :P(:XI = 2] X3 +X2 =3, ng -‘: 0= 3
P(X =50 X1+ Xt Xa =2, ng=1) == [X] =1| X1+X2+X3 =2, np=1}=
etc. The general formmla for P(Xy = {| X1 4 Xo =k, ﬂu =0) is given by
P(Xy =X+ Xo=k, ng=0)= ( Jl” )g;l(k)

Similarly,

k—1-1
k! .
POy = UK+ Xyt Xe = koo =0) = D, ol
m=1 s

-1
2 ~
PXi+ Xy =l X1+ Xa+ X =k, mo=0)= > W-T)!ﬁ (k)
m=t ! '

In general, for m < 7, : |

P(ZA =1 ZX =k, np= \; Yy N T '31 ¢ (R)

q?]l 17?
'!m J1 Jnem

where Eﬂ" Li=land > ™ ', =k-1

=1

K |
4 Parametric Inference for a Z1P Distribution

' l
As mentioned earlier, the 111an and the varisnce of a ZIP distribution are given

by .
BX)= (1= A V(X) = (1 $AlL+ 6N

So, if X{, Xz, .., X isa random sample from a ZIP distribution with parameters
(¢, A}, then 1— %\g is an unbiased estimator for ¢ if A is known, whereas T ‘i{ is
an tnbissed estimator of A if ¢ is known. But, in general, both ¢ and A will be
unlmown and there is no sample-based unbiased estimator for the parameter-
veetor (¢, A). However, it is easy to obtain the method of moments (MOM)
estimators which arc




. T x? . X2
Ariom = =228 — 1, oy =1 — ————
) X’i 1 QSI : EX? AEX1

The sample likelihood fut‘nction is give:‘n by

L8, ) = (84 (L= o) (L= e 2

where ng is once again the number of zéros in the sample. From this, it is easy tp
see that the maximuni likelihood estinzators for the parameters can be obtained
by solving o | |
. ‘ . (no/n) — e weE |
AMELE 2= domgmee AL = S
|~ ¢mre | 1— e Aaree |

For' this pair of equatidng, no analytic solution exists and it must be solved
numerically, which involves the Lambeirt’s W function (see, for example, Corless
et al. (1993)). In Appendix 2, we report the resubts from shimulation studics
conducted to explore the bias and the variance of the estimators mentioned
above as functions of the two parameters. [rom the likelihood function, it
should be clear that the 2:x 1 vector (np, >, X;) is jointly sufficient for the two
parameters (¢, A). Tn fart) it can be shawn thal they are minimally sufficient.s

Now suppose that Xy, ..., X, are 1.i.d. following a ZIP{¢, ;) distribution,
Yi,..., Y, are iid. following a ZIP (e, Ap) distribution and we want to test
Ho : {1, A1) = (2, Ag) Versus H; :#. Let ne and myp be the counts of zero values
in the two samples. Under Hy, ng+my has a Binomial(2n, ¢) pmf where ¢ is the
common value of ¢ and ¢a. If ng +mg is observed to be k and Z:Ll (X;+ Yo
is observed to be k*, we reject Hy at the preassigned level o provided that the
test-statistic 31, X; exceeds the (1 §)* percentile of, or falls below the %
percentile of the conditional pmf of 375, X; given Y1 (X; + Vi) = &* and
ng+mg = k. Recall from the previous section that this conditional distributjon
is parameter-free. In order to achieve an exact significance level of a, it may
be necessary to randomize this test. The statistics E?:.x (X;+Y;) and ng + Em,g
together induce a partition of the sample space and here we are conditioning
on those partition cells. If the conditional test is performed at level a, the
unconditional significance level is & as well, since P(Type I error | Hyp) is equal
to

2n oo \ 18 n
z Z P(Type L ervor | Hy,np+my =k, Z{Xi+l”f) =E*).P{ng+my =k, Z(Xi+l”i) =£k*)
k=0 k*=0 i=1 i=1

This fest is, in some sense, a generalization of the one introduced by Przy-
borowski and Wilenski (1940) for the equality of two Poisson means.







where 75 ++ g + 13 = k. In geueral, we have,
; " )
- ' D2l _4,, (
PXy =) Y Xy = k)= 07! 1,,,!)
im1

E.’:l Zu . ‘\Ea:n ('L_F&LTLMT;T)C |

1

where 0,1 =k — [ and Z::-":l =k
Also, if we let pp o (L, E) = P30, Xi =1 3.0, X; = k) for m < n, then,

¢
I Cen (kD!
( l ) Eh ) L'l"‘ (EI-"'zm-) 2Jj1 .sz"‘ s (jl""jnﬂn-

B\
POSEEED D (;l‘l—inr)
for E:"lhml Sh i di=k—l Y=k
For a random 5'1n1plc of size # from a CMP population, the likelihood func-
tion is given by

Pmn (!: k) l==

}\) @i

R (1 R F S )

. .
where T({,A) = > 1, Ui\—nf Then the vector (T, X!, o5 X;) is jointly

minimally sufficient for (¢, A}. Now let us write Y = J1_, ¥; = [, Xil. Then
Y; takes values 01,11, 21, ... ets., ie, 1,1,2,6,24, ...etc. As a result, if y is the
factorial of a nonnegative integer @, then
AI

=TT

(=1)¢ 3k (i-\!)c

So, we can caleulate P(Y = y) where y is the prc{duct of n uniquely determined
factorials, say, the factorials of 21,...,2, {it is n(f)t necessary that all z1, ..., s
are different). Let y; = z;! for i = 1 2,. uppose that the only distinct

numbers among Ti,...,Tn A€ 21,...,2 Let n, be the number of times z; is
present for i = 1,2,... ,k, so that Zn, = 7¢. Then we have

nj
PY =4
( v) = m'nz ﬂk' H ( (") XiZe {zl)c)

which is the same as

P(Yi=y)=P(Xl=z!) = P(X; =

nl AD
nylngl ! (1 28R (C, )

PY =y) =




6 AJel*o-lnﬂa,ted Conway-Maxwell-Poisson distri-
bution

The zero-inflated CMP distribution is defined as

POX=0)= 6+ (1~ D755
)\k
L1y

and P(X = k) = (1 ) ‘I,((’";) N

for0 < ¢ <landk=1,2,---, where ¥{{, \) is as in the provious scction. Then
the convolution distribution for two i.i.d. ZICMP random variables is given by

PX 4+ Xy =0) = (¢+(1 —¢)W—{§:§)

' )\’“ X‘r ¢
an:d PXy+ Xy = k) =2¢(1 415)\1,@ ) +(1-¢)* CRBNE Z ( ) :
: ¢

=0
In goneral, if we denote Gmn(k.() =32, . 30 (E_kgl_gf) then we

N m41: ln
have

”*\ L ‘__ i n —).\_l: m 1_¢ n—m )
P(;:F‘;_XT - L} - 7;] ( m ) k1 (¢ + (1 gé) Q(C,A)) (l{!((, /\)) Gm,n(l":C)-

If we condition on the event ng = 0 where ng is once again the munber of
zero-values, the conditional pmf of E?:I X; has a somewhat simpler form. Of

course, 1tg itself is binomial with probability of success p= ¢ + {1 — (f))fﬁ'{%ﬂ'

The simplest case is

Pt =m0 =0~ e (=) S (F)

In general,

PO =Hm =0 = e (5 CA—l)Z ()

i=}1

Tn

where each ¢ is positive and i, +--- + 1, = k. Also, as in Secction 3, it can be
shown that P(3"0 X; =k |ng = j) is the same as P(S1F Xi = k | ng = 0)
As for the conditlonaf joint pmf of Xy, -, X, given ng = 0, it is

Azmi 1 7L
P(Xy =1, X = an|ng =0) = (Fla:h)s ('I‘(g A) = 1)
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In general, by ijduction on n, we can prove that

2
]
-

P A X = k) = 3 "Pa (1 ¥ [pH(1—@)e I P(Vy e 4V = )

1

‘ Hl= gy PV 4+ Vo = k).

Suppose we have proved this for n. Then, we can prove this for n+1 as follows:

i

1

P(X{+ Xt X1 = k) = (n+ DP(Xy = OP(Xp + -+ Xpyy = k)
| ey Qs
+ Z H + a} { — gyl At Hhal \ b

k;»“ "‘n+1%'J i=1 .

= (DI (AB)e Y "Pacy 61— (1) ]I P(Virke- 4V, = B)

=1

n+k (1 + ]‘, &
+(1=@)"P(Vi+- - -+V, = k)| + Z H (1 —g)He —Alln+1)+kal 3k
PR ST grate

n—1

= Z: n.i-an+1,j &(1 — ¢)J [(;5 (1 - zf))e_)‘]"'“jp('ﬁ do b V= k)

+n+ (1 - )" PL+- -+ V= k)
+{n+1)(1 - ¢)"’+le_"P(Vl bt V=)

1
+ Z H (1 +k; Q) ( - Cb)u+lB—)\[(1r1+1)-|--kc)f])\k

Eq,e- e Wing1£0 i=1
n |
= 3 PPy 81 P16+ (1 e PIP(A e 4 T =)

HL— )" PV A+ Vi A+ Vg = k)

8 Bayesian Inference for a ZIP Model

Bayesian analysis of an ordinary Poisson model uses a Gamma density as a
conjugate priér on the mean parameter A. Bayesian analysis of a CMP model has
been discussed by Kadane of al. (2006) and that for a generalized Poisson model
can be found in Angers and Biswas (2003). Ghosh et al. (2006) introduced
a zero-inflated power series (ZIPS) model which includes the ZIP model as a
special case and carried out a Bayesian analysis under a generalized linear model
setup with covariates. They used a Beta prior on the zero-inflation parameter ¢
and an appropriate prior on A that is conjugate for the power series model. Here
we adopt a different approach. First we describe a Bayesian hierarchical model
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that leads naturally to a methed df two-saniple (of multi-sample) comparison.
Then we present a comjugate Eayesian a.nal%'ysis for the sum of (conditionally)
iid. ZIP random variables. ‘ ‘

Suppose we have independent sam,ples from J ZIP populations, say, repre-
senting the counts of individuals vho jespond in a barticular way to J different
treatments administered independent]y K times. Let Yj. be the E*® veplicate
count observed under the §* treatment (j = 1,...,Jand k = 1,..., K). We
assume that Y ~ ZTP(p, Azg). Tn Otimr words,

pr(Yik =y) = ply =0)+ (1 - §)P(Vjy =v) (3)
for some 0 < ¢ < 1, where Y}, - ]?ofls::;on()\j;;). Then we model iog(Ajk) as
log(Pyi) = Bi Hen f (4}

where ¢, is the random residual component following Normal{0, %). The use
of a residual component in the link-fupction specification is consistent with the
belief that there may be unexp ained sources of variation in the data, perhaps
due to explanatory variables thet were not recorded at first. This is particularly
appropriate for Poisson data sets with over-dispersion. The use of residual
effects within GLMs is discussec! in Sun et al. (200C) and is a special case of the
class of generalized linear mixed models (Zeger and Karim, 1991; Breslow and
Clayton, 1993). Equation (3) boils down to
\

log(N;i} ~ Normal (2, 07) : (5)

where f5; is the effect of the j* freatment. We usc conjugate priors in this hicr-
archical model and center the péra:lke:tgrs for efficient MCMC sampling (Gelfand
et al.,1995). Let NZG be the Normal-Inverse Gamma family of conjugate distri-
butions in which, the mean follows a Normal distribution conditionally on the
variance and the variance marzinally follows an Inverse-Gamma distribution
with the hyper-prior parameters u and v having the appropriate subscripts. In
other words,
|
0,07 ~ NTG(0g,0%, u,v) implics that
Bla® ~ N(fg,0%) and i
o® ~ TG(u,m) - '

With this notation in mind, this is how we specify owr priors:

ﬂjagg ~ AfI‘}(#, 5?3, 'Hﬁ,ﬁ—,@ﬁ’ﬂ.} |
|
s O‘ﬁ ~ .J\fl'g(yg, or?” Ty Upr. )

However, Lhe specificalion of the zevo-inflalion parameter makes the sampling
frowm the (conditional) posterior distribution'extremely difficult. Agarwal et al
(2002) and Ghosh et al (2006} cleverly handle the problem by introducing a la-
tont variable. In the present context, denoting the latent variable corresponding
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to Yji by Z;i, the complete likelihood of the data is L(y, z | ¢, A} =
_.,\jk:\yik

[ e {(1 SO } ®)

or, equivalently, L{y, z | ¢,\) =

— A Y¥ik
e M Ajk

TI ey, "

Yjp=0

s gy 1

wat
k>0 Yik

[
where ng == Zj Yopzipand n = JK.
We assume a Beta(a, b) prior on ¢ and elicit conjugate priors for all the
variance parameters. In summary, our hierarchical modei is given by:

Yii o~ ZIP($, M)
¢ ~ Beta(o,b)
log(Ajr) ~ Normal{8;,s?)
o2~ TG(tter, 1)2,,)
ﬁj:dﬁzi ~ Nl—g(ﬂ'nggsuﬁ,ﬂuvﬁ,ﬂ)

2 2
B0 ™ NIG(po, O Uy iz Vpn)

Sampling from the posterior distributions can be performed using a block
Gibbs sampler. All the conditional distributions except for those of the A-
values and ¢ have conjugate forms. Using fatent variables has the advantage
that sampling from the conditional distribution of the zero-inflation parameter
reduces to sampling from its conjugate distribution. However, a Metropolis-
Hastings step is needed for drawing the A-values and a log-Normal proposal
distribution will work. We would prefer using relatively flat priors for ali the
variance parameters.

Next we move onto a conjugate Bayesian analysis of Z = E?;1Xi where
Xy,..., X, are conditionally 1.i.d. ZIP (), ¢} variables given the parameters.
One can assume that

(i} A has an a priori I'(js, o) density given by

- #ﬂ a—1 -'-;(A
f) = %)\ e
!
for A > 0 and a positive integer o; :
(i) ¢ has an a priori Beta(a,b) density for some ¢ > 0 and b > 0 (one can
choose ¢ = b = 1 yielding a U(0, 1) prior);
(iii) A and ¢ are independent, in which case the joint prior density denoted
by A(A, ¢} will be the product of the above two.
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Then, if {X;,Xz, -+, Xn} is a sample of size n from the p.m.f.in (1), which
implies that Z = 30 Xz, will have the pn.f. P(Z = z| A, &) in (2), one does
the usual posterior cal('uiatlop and gets the following. The vnconditional or
marginal distribution of Z is

P(Z =2) = J!——I(z =0)+ b “‘P(N = 2)

BT nplie VT

where N, is negative binomial with paraineters (a, ;T%E) The posterior
joint distribution of A and ¢ i3 givcn by

[¢"I(z =0) }-E,_l P(Y, = 1)P(Z? = z)} ~)-/\“ Tg=pd

(X ¢l =
ol = n+—{-’(2*0)+—‘—{>::?1 P(N, = z)

APPENDIX

Appendix 1A: Probability mass function of the GZIP distribution
Consider the paper by Consul and Jain (1973). They introduced a generalized
Poisson distribution as follows:

P(X =2l X, 2) = }\1‘()\1 + 2dg)® e Ritea) 1

forx=0,1,2,- - so that : |
.p(X:‘ﬂll)\l,}\g:i =0 '
! |
for & > m if A1 +mAe < 0. But in our case, il is good enough to consider A > 0
so that P(X = x| Ay, Ay) is never zero. One can observe that butting Ax = 0,
we can get back the usual Poisson dlstubutlo
Consul and Jain referred to Jensen (1902) for proving that P( =x| AL, A2) =
1. They used one-dimensional Lagrange’s foramila to prove this:

o 1 d?“l ‘m , P
0+3 5 (gversen)  (w5) ®)
where ¢(z) = eM? and f(z) = &M=, Now it can be shown that
m—1 |
(ddzq 1 [f(z)mfﬁ'(z)])z:o = :*1(1\1 + Aoy

so that (8) becomes

o] ! B}
6'\12 - ;ﬂ %/\I(AI + /\2115)35—1 (\ﬁ) (9)

This is true for all z. So, substituting z = 1, we get
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o

which implies

[

=)
-3
=0

so that the right hand side is 1y

=

tuting Ay = A and i—? =q i o
P{X =z|A,
which is nothing but U ~ GP{

(0]
S TP(X =a| X0

i=0 :

Therefore, if we go to zero-inflg

PX =0)=g+(1— e

for & > 0, then we get
S P(X=a)=¢+(
—r

Appendix 1B: Expectation
Here we derive the mean of a z
this, we go back to the paper
Consul and Jain have their ov

negative vahues of As. In our cd

the following:

s\ A
dae :Z*l"(.'(a,--- !

w=1

which is same as

1 el  —Aex
ET At ()\1 - )\:;,’E)"' 1 e A2

z\; (;\E + /\23;)5:—1 C'_{AI-H\QI}

othing but Yo7 ) P(X = 2| A1, A2). Now substi-
ur write up, we get
AF —1_—(14az)h
) = _:a,-r(l + oyt e
e, A} in our notations. So, it is proved that

« oy
L et o
i==0

ited generalized Poisson distribution where

! AT _
PX =a)=(1- @[“ﬂ;}"(l + qz)* Lo (THamA]
L — ) i £(1 + a,,;)w—le—(l;rnaz)x e 1

v p z! ' =

P

of a GZIP distribution

ro inflated generalized Poisson distribution. For
by Consul and Jain (1973) and work with (9).
n way of dealing with this as they arc allowing
ise, we can simply differentiate (9) and arrive at

\1 -+ Azﬂ,‘)m_l

257 e AT Ny (10)

1()\] + Aﬁw)m_l zl‘—l c—{r\1+A2W)z

Now putting z = I once aga.in;

(z— 1)

we get
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Moo= A+ Aoz ! —(As4Aaz
T = 2 -1 ° |

|
Onc can observe that the right hand side is thie expectation of X so that E(X) =

—1—}5 Substituting Ay = {, one can see that it is the mean of the usual
Poisson distribution. Now, coming back to the gcnerahzcd Poisson distribution

U~ GP{a, ), we get, B(X) =3 o )‘ (1 +.$.‘3:l__ —(I+az)d ,\ . For
rero-inflated generalized Peisson dlstubutlon the expectation is gnen by

w=1

E(X) = |1—¢)Z ”m) o~ rtaa) *(1_?;)

Suastituting ¢ = 0, we get the mean of the usual generalized Poisson distribution
back, |
Appendix 1C: Variance of a GZIP distribution

,Our next goal is to get the variance of the zero-inflated generalized Poisson
distribution. For this, we again go back to the equation (10). We differentiate

it once morc to gt - ;

[

o B r—1 o0 ;. 1:—1.
A?é)\] 7 _. Z )\1 (A(lw%zm—2 —,\zzcz(I__Azz)2_Z )\1 (/\(1‘;- )\f;;l___zm—le—)\ng/\2(2_}‘zz)
‘ i—2 oAl i=1 o

which simplifies to

fe. o) a:7 oD
)\% - Z A1 (A(l + )\22;?) 2E 2o FAam)e (1— )\22:) Z 1+ )\;;) S PR ERE D EY L)Z/\2(2 Aoz)
£ — o) : !

| 12
Substituting z = 1, we get

Ml + Aoy A+ da)l
2 — (Al-iwkg‘!) 2 : ()\1+/\2:D) a9_
"\ ) Z ('1'7 . 2}[ (l )\ } Z (.’L' . 1:"[ € AQ( AQ)
(11}

Now the second term without the negative sign is just £(. X’) multiplied by
Az(2 — Ag) and hence {11) becomes ; .

i=2 i=1

= A(AL 4 Agz)l Aha(2 — Ag)
2 _ ALAAL 2 (Ma+dem) ey 2 1
M= Ty e (=) = =5

$=2

From this, one shows that

i M+ 22" s _ MA@ A
(z — 2)] I F S W L T R W

i=2
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Now the loft hand side is nothing but E[X (X — 1)] in Consul and Jain’s set up.
Adding F{X) to it, we get
I A2 A
B(X% =" :
RN e W A (W

Finally, subtracting; [BE(X))? from it, we get

A1

YRR

Substituting Az = 0, we get back the variance of the usual Poisson distribution.
Now, considering the 1Tlsual generalized Poisson distribution with U ~ GP(a, A),
we get

A aA(2 —ad)
T-anE T Aoy ]

EIX(X - 1) = A [

so that

o

: )\‘,

2y _ A iV = 7)\
BXT) = {1 —ai)? * (1 —a))®’ vX)= (1—a))?

Next, considering the zero-inflated generalized Possion distribution, we get

A aA(2 — ad)
(I—a? 12 ah)? }

BIX(X - 1)} = (1 ¢)A [

Adding E(X) = %E—%{E to both sides, we get

E(*X‘Q) - (1 - ¢)A [(1 MAQA)Q -+ (1 _10{)\:)3]

Finally, subtracting (E(X))? from both sides, we get

pL-gN? (1=
T aE {1 any?

V(X) =

Substituting ¢ = 0, we get back the variance of the usual generalized Poisson
distribution back. ‘

Appendix 2: Simulation résults for biases and variances of estimators
For the maximum likelihood and method-of-moments estimators of A and ¢ that
we mentioned in Section 4, here we report the resulés of some simulation studies
regarding their bias and variance. For a fixed value of ¢ & (0, 1), we gencrated
M = 1000 random samples of size n = 100 from a ZIP(¢,A) distribution with
A = 2,3,...,10 and each time computed the bias in the method-of-moments
estimatar for A. For each ), we then averaged the 1000 bias values and plotted
this average bias against A. Also, for each A, we computed the sample variance of
the 1000 A aronr values and plotted it against A. We repeated this exercise for 9
different values of ¢ and the resulting 9 ‘A vs. average bias’ graphs, represented
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